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Abstract
Explicit function forms of hyperelliptic solutions of Korteweg–de Vries (KdV)
and Kadomtsev–Petviashvili (KP) equations are constructed for a given curve
y2 = f (x)whose genus is three. This paper is based upon the fact that about one
hundred years ago (Baker H F 1903 Acta Math. 27 135–56), Baker essentially
derived KdV hierarchy and KP equations by using a bilinear differential operator
D, identities of Pfaffians, symmetric functions, the hyperelliptic σ -function
and ℘-functions; ℘µν = −∂µ∂ν log σ = −(DµDνσσ )/2σ 2. The connection
between his theory and the modern soliton theory is also discussed.

PACS numbers: 0545Y, 0230

1. Introduction

In this paper we will construct explicit function forms of hyperelliptic solutions of Korteweg–
de Vries (KdV) and Kadomtsev–Petviashvili (KP) equations for a given curve y2 = f (x)

whose genus is three, along the lines of the study of Baker’s sigma function [B1, B2, B3].
This construction means re-evaluation of Baker’s studies on hyperelliptic functions which
were conducted one hundred years ago, in particular, his studies of algebraic functions over a
general compact Riemannian surface [B3]. Although his general theory is already known to
be related to Baker–Akhiezer functions [B1, K1, K2], the paper [B3] published in 1903 might
have been overlooked.

According to [B3], in around 1898 he discovered series of partial differential equations
which led to the hyperelliptic sigma function, σ , and ℘-functions, ℘µν := ∂µ∂ν log σ . If one
saw the partial differential equations, one would know that they are related to soliton equations
such as the KdV equations or the KP equations. However, Baker’s definition of parameters
is different from that in modern soliton theory. Further as the paper [B3] requires knowledge
of hyperelliptic σ - and ℘- functions which might not be familiar nowadays [B1, B2, O2], it is
not easy to understand its contents and to confirm the derivation. In this paper, we will give
correspondences between his differential equations and the KP equation and first and second
equations of the KdV hierarchy in order to construct explicit function forms of their periodic
multi-soliton solutions.
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The identification between Baker’s differential equations and these soliton equations
means that Baker essentially discovered the KdV hierarchy and the KP equation one hundred
years ago. In his study, he used the Pfaffian, symmetric functions, a bilinear operator D, a
hyperelliptic sigma function σ and ℘-functions; ℘µ,ν = −(DµDνσσ )/2σ 2.

In this paper, we will comment on its relation to soliton theory in section 4. As we
will mention there, we can regard Baker’s theory as being on the differentials of the first
kind over a hyperelliptic curve. As compared with his theory, the ordinary soliton theories,
e.g. Sato theory [SS], Date–Jimbo–Kashiwara–Miwa (DKJM) theory [DKJM], Krichever
theory [K1, K2], conformal field theory [KNTY] and so on, can be considered as theories of
the differentials of the second kind. Thus Baker’s theory is not directly connected with the
modern soliton theories, even though he used the Pfaffian, symmetric functions and a bilinear
operator D. Indeed he might only have been interested in properties of periodic functions on
non-degenerate curves. As far as I am aware, he did not consider the soliton solutions, which
are expressed by hyperbolic functions or trigonometric functions. Hence he did not arrive at
Hirota’s direct method [H] even though he defined and used the bilinear operator.

However, as all values appearing in Baker’s theory have algorithms to evaluate themselves,
we can deal with hyperelliptic functions in the framework of his theory as we can do
with elliptic functions. For example, we can concretely determine any coefficients of
Laurent or Taylor expansions of σ - and ℘-functions at any points in any hyperelliptic
curves [B1, B2, B3, G, O1, O3]. Recently, requests to evaluate the hyperelliptic functions
explicitly appeared from various fields, e.g. from studies on Abel functions, from number
theory [G, O1, O3] and from studies of an elastica which is closely related to the KdV
equations [Ma1, Ma2]. There, Baker’s theory of hyperelliptic functions plays a central
role [G, O1, O3, Ma2]. The purpose of this paper is to re-evaluate Baker’s work from the
viewpoint of soliton theory.

Only after completion of this paper did I become aware of the works of Buchstaber
et al [BEL1, BEL2, BEL3] and others ([CEEK, EE, EEL, EEP, N] and references therein).
The authors in [BEL1, BEL2, BEL3, CEEK, EE, EEL, EEP, N] also re-evaluated the theory of
Baker’s hyperelliptic sigma functions, which they call Kleinian functions, and have extended
it from the point of view of soliton theory. For example in [B3], Baker derived a differential
identity of the hyperelliptic ℘-functions of arbitrary genus, called fundamental formula
and mentioned in section 4 of this paper, which must include the KdV hierarchy and the
KP equations of higher genera but he explicitly presented them only for the genus three
case. On the other hand, in [BEL1, BEL2], the authors developed a method in terms of
matrices by considering a subset of ℘-functions (℘gi){i=1,...,g} as a vector and then gave the
explicit relation of the KdV hierarchy and the hyperelliptic ℘-functions of arbitrary genus
g. Their method is consistent with the zero curvature condition in modern soliton theory.
Using the hyperelliptic sigma function and defining natural sigma functions of more general
algebraic curves, the authors in [BEL1, BEL2, BEL3, CEEK, EE, EEL, EEP, N] have been
constructing deeper theories of Abelian functions and soliton equations. Thus, needless to
say, [BEL1, BEL2, BEL3, CEEK, EE, EEL, EEP, N] are outside the realm of Baker. In fact
most of results in section 2 of this paper (proposition 4 and theorem 6) has been mentioned
in their studies [BEL1, BEL2, EE] and a review of part of Baker’s theory in [BEL2] is very
nice even for readers who are not familiar with hyperelliptic functions. In [BEL3], it was
pointed out that ℘11 of a hyperelliptic curve of genus g > 2 with odd degree polynomial is a
solution of the KP equation, which corresponds to the relation (IV-15) in (2–15) of this paper.
However in [BEL1, BEL2, BEL3, CEEK, EE, EEL, EEP, N], they did not comment upon the
paper [B3], which contains interesting and fruitful results from the modern point of view as
described in section 4. Further as far as I know, there has been no study on a hyperelliptic
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function solution of the KP equation over a hyperelliptic curve with even degree polynomial,
which directly reproduces the natural dispersion relations of the KP equation. The connection
between modern soliton theory [DKJM] and Baker’s theory which is discussed in section 4 is
also considered from the viewpoint of the re-evaluation. Thus I believe that this paper is still
important.

2. Hyperelliptic solutions of KdV equations

In this section, we will consider hyperelliptic solutions of the first and second KdV equations
in the KdV hierarchy. First we will define the notations and definitions that will be used in
this paper. Although we mainly deal with a curve of genus three, we give definitions and
expressions of hyperelliptic curves with general genus for later convenience. In this paper, we
will mainly use the conventions of Ônishi [O1, O2]. We denote the set of complex numbers
by C and the set of integers by Z.

Notation 1. We deal with a hyperelliptic curve Xg of genus g (g > 0) given by the algebraic
equation

y2 = f (x)
= λ0 + λ1x + λ2x

2 + · · · + λ2g+1x
2g+1

= (x − c1) · · · (x − cg)(x − cg+1) · · · (x − c2g)(x − c2g+1) (2.1)

where λ2g+1 ≡ 1 and the λj and cj are complex values.

Since we wish to treat the infinite point in this curve, we should embed it in a projective
space. However as this is not difficult, we assume that the curve y2 = f (x) includes the
infinite point. Further, for simplicity, we also assume that f (x) = 0 is not degenerate. We
sometimes express a point P in the curve by the affine coordinate (x, y).

Definition 2 ([B1, p 195], [B2, p 314], [B3, p 137], [O1, pp 385–6], [O2]).

(1) Let us denote the homology of a hyperelliptic curve Xg by

H1(Xg,Z) =
g⊕
j=1

Zαj ⊕
g⊕
j=1

Zβj (2.2)

where the intersections are given by [αi, αj ] = 0, [βi, βj ] = 0 and [αi, βj ] = δi,j .
(2) The unnormalized differentials of the first kind are defined as

ω1 := dx

2y
ω2 := x dx

2y
, . . . ωg := xg−1 dx

2y
. (2.3)

(3) The unnormalized differentials of the second kind are defined as

ηj := 1

2y

2g−j∑
k=j
(k + 1 − j)λk+1+j x

k dx (j = 1, . . . , g). (2.4)

(4) The unnormalized period matrices are defined as

���′ :=
[∫

αj

ωi

]
���′′ :=

[∫
βj

ωi

]
��� :=

[
���′

���′′

]
. (2.5)

(5) The normalized period matrices are given by

t [ ω̂1 · · · ω̂g ] :=���′−1 t [ω1 · · ·ωg ] T :=���′−1
���′′ �̂�� :=

[
1g
T

]
. (2.6)
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(6) The complete hyperelliptic integrals of the second kind are given by

H ′ :=
[ ∫

αj

ηi

]
H ′′ :=

[ ∫
βj

ηi

]
. (2.7)

(7) By defining the Abel map for the gth symmetric product of the curve Xg and for points
{Qi}i=1,...,g in the curve:

ŵ : Symg(Xg) −→ C
g

(
ŵk(Qi) :=

g∑
i=1

∫ Qi

∞
ω̂k

)

w : Symg(Xg) −→ C
g

(
wk(Qi) :=

g∑
i=1

∫ Qi

∞
ωk

) (2.8)

the Jacobi varieties Ĵg and Jg are defined as complex torus,

Ĵg := C
g/ ̂  Jg := C

g/   . (2.9)

Here  ̂  (   ) is a lattice generated by �̂�� (���).
(8) We define the theta function over C

g , characterized by  ̂  , as

θ

[
a

b

]
(z) := θ

[
a

b

]
(z; T) :=

∑
n∈Zg

exp
[
2π i

{
1
2
t(n + a)T(n + a) + t(n + a)(z + b)

}]
(2.10)

for g-dimensional vectors a and b.

We should note that these contours in the integrals are, for example, given in p 3.83 in [M].
Thus the above values can be, in principle, computed in terms of a numerical method for a
given y2 = f (x).

It is also noted that in (2.3), we have employed the convention of Ônishi [O1,O2], which
differs from Baker’s original one by a factor of 1/2. Due to the difference, the results and
definitions in [B1,B2,B3] will be slightly modified but the factor set us free from extra constant
factors in various situations [G, O1, O2, O3].

Definition 3 ((℘-function, Baker) [B1], [B2, p 336, p 358, p 370], [O1, pp 386–7], [O2]).
We prepare the coordinate in C

g for points (xi, yi)i=1,...,g of the curve y2 = f (x),

uj :=
g∑
i=1

∫ (xi ,yi )

∞
ωj . (2.11)

(1) Using the coordinate uj , the sigma function, which is a holomorphic function over C
g , is

defined as

σ(u) = σ(u;Xg) := exp(− 1
2
t uH ′���′−1

u)ϑ

[
δ′′

δ′

]
(���′−1

u; T) (2.12)

where

δ′ = t [ g2
g−1

2 · · · 1
2 ] δ′′ = t [ 1

2 · · · 1
2 ] . (2.13)

(2) In terms of the σ -function, the ℘-function over the hyperelliptic curve is given by

℘µν(u) = − ∂2

∂uµ∂uν
log σ(u). (2.14)
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The σ -function is a well tuned theta function. Equation (2.13) is related to the so-called
Riemannian constant K as mentioned on p 3.80–82 in [M]; δ′ + Tδ′′ agrees with K . As the
σ -function [B2, p 336, p 358] consists of the shifting Riemann theta function (2.10) [B2, p 324,
p 336], the Riemann constantK outwardly disappears. (Thus the σ -function vanishes just over
the theta divisor.) Using the σ -function, Baker derived the multiple relations of ℘-functions
and so on. Hereafter we assume that the genus of the curve is three.

Proposition 4 ([B3, pp 155–6], [O1, p 388], [O2]). Let us express ℘µνρ := ∂℘µν(u)/∂uρ
and℘µνρλ := ∂2℘µν(u)/∂uµ∂uν . Then hyperelliptic℘-functions obey the following relations:

(IV-1) ℘3333 − 6℘2
33 = 2λ5λ7 + 4λ6℘33 + 4λ7℘32

(IV-2) ℘3332 − 6℘33℘32 = 4λ6℘32 + 2λ7(3℘31 − ℘22)

(IV-3) ℘3331 − 6℘31℘33 = 4λ6℘31 − 2λ7℘21

(IV-4) ℘3322 − 4℘2
32 − 2℘33℘22 = 2λ5℘32 + 4λ6℘31 − 2λ7℘21

(IV-5) ℘3321 − 2℘33℘21 − 4℘32℘31 = 2λ5℘31

(IV-6) ℘3311 − 4℘2
31 − 2℘33℘11 = 2+

(IV-7) ℘3222 − 6℘32℘22 = −4λ2λ7 − 2λ3℘33 + 4λ4℘32 + 4λ5℘31 − 6λ7℘11

(IV-8) ℘3221 − 4℘32℘21 − 2℘31℘22 = −2λ1λ7 + 4λ4℘31 − 2+

(IV-9) ℘3211 − 4℘31℘21 − 2℘32℘11 = −4λ0λ7 + 2λ3℘31

(IV-10) ℘3111 − 6℘31℘11 = 4λ0℘33 − 2λ1℘32 + 4λ2℘31

(IV-11) ℘2222 − 6℘2
22 = −8λ2λ6 + 2λ3λ5

−6λ1λ7 − 12λ2℘33 + 4λ3℘32 + 4λ4℘22 + 4λ5℘21 − 12λ6℘11 + 12+

(IV-12) ℘2221 − 6℘22℘21 = −4λ1λ6 − 8λ0λ7 − 6λ1℘33 + 4λ3℘31 + 4λ4℘21 − 2λ5℘11

(IV-13) ℘2211 − 4℘2
21 − 2℘22℘11 = −8λ0λ6 − 8λ0℘33 − 2λ1℘32 + 4λ2℘31 + 2λ3℘21

(IV-14) ℘2111 − 6℘21℘11 = −2λ0λ5 − 8λ0℘32 + 2λ1(3℘31 − ℘22) + 4λ2℘21

(IV-15) ℘1111 − 6℘2
11 = −4λ0λ4 + 2λ1λ3 + 4λ0(4℘31 − 3℘22) + 4λ1℘21 + 4λ2℘11

(2.15)

where

+ = ℘32℘21 − ℘31℘22 + ℘2
31 − ℘33℘11. (2.16)

Remark 5.

(1) Due to the definitions, indices of ℘ are symmetric, i.e. ℘µν = ℘νµ, ℘µνρ = ℘ρµν = ℘νρµ
and so on.

(2) The above equations are independent because the axes of the Jacobian Jg are independent.
(3) In the same manner as Baker [B3, p 151], by introducing the bilinear differential operator

Dν ,

Dµσ(u)σ (u) :=
(
∂

∂u′
µ

− ∂

∂uµ

)
σ(u′)σ (u)|u=u′ (2.17)

we have the relations

℘µν = − 1

2σ 2
DµDνσσ (2.18)

℘λµνρ − 2(℘µν℘λρ + ℘νλ℘ρµ + ℘λµ℘ρν) = − 1

2σ 2
DλDµDνDρσσ. (2.19)

Then the equations in proposition 4 can be regarded as the bilinear equations of σ -
functions. For example, (IV-1) is given by

(D4
3 − 4λ6D

2
3 − 4D3D2 − 4λ5λ7)σσ = 0. (2.20)
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Theorem 6. For v = −2(℘33 + λ6/3) and v(t1, t3, t5) = v(u3,− u2
22 ,

u1
24 + 3

24λ6
u2) both the v

obey first and second KdV equations:

∂t3v + 6v∂t1v + ∂3
t1
v = 0 (2.21)

∂t5v + 30v2∂t1v + 20∂t1v∂
2
t1
v + 10v∂3

t1
v + ∂5

t1
v = 0. (2.22)

Proof. By differentiating (IV-1) in u3 and tuning them, we obtain the KdV equation. We note
that the second KdV equation is expressed by

∂t5v + (∂2
t1

+ 2v + 2∂t1v∂
−1
t1
)(6v∂t1v + ∂3

t1
v) = 0 (2.23)

where ∂−1
t1

implies an integral with respect to t1. By setting 2∂u3 × (IV-2) + ∂u2 × (IV-1) and
∂t5 = 16∂u1 + 16λ2

3 ∂u2 , we obtain second KdV equation. �

Remark 7.

(1) Theorem 6 and the definition of ℘ mean that solutions of the KdV equation are explicitly
constructed. The quantities in definitions 2 and 3 can be, in principle, evaluated in terms
of numerical computations because there is no ambiguous parameter.

(2) We note the dispersion relations: uj behaves like (1/x)2(g−j)+1 around the infinity point
if we use the local coordinate x2 := x. By comparing the order of x, denoted by ordx , we
have the relations

ordx(u2) = 3ordx(u3) ordx(u1) = 5ordx(u3). (2.24)

These are the dispersion relations of the KdV equations.
(3) Roughly speaking, integrating the KdV equation in t1 becomes (IV-1) in proposition 4.

Then there appears an undetermined integral constant. However in proposition 4, it is
fixed and associated with the coefficients of the algebraic equation y2 = f (x). Thus
(IV-1) in proposition 4 is more fundamental than the KdV equation.

(4) For the genus two case: we put ∂σ/∂u3 = 0 and λ6 = λ7 = 0; (IV-1)–(IV-10) becomes
meaningless as 0 = 0 and + = 0. v = −2(℘22 + λ4/3) and v(t1, t3) = v(u2,− u1

22 ) obey
the first KdV equation (2.21).

(5) For the genus one case or elliptic functions case: we put ∂σ/∂uµ = 0 (µ = 2, 3) and
λa = 0 (a = 4, 5, 6, 7); only (IV-15) survives, which is the relation of the elliptic ℘-
function.

3. Hyperelliptic solutions of the KP equation

Instead of the curve of (2g+1)-degree, we will deal with a hyperelliptic curve of (2g+2)-degree
in this section.

Notation 8.

y2 = f (x) = λ0 + λ1x + λ̄2x
2 + · · · + λ̄2g+2x

2g+2

= (x − α1) · · · (x − αg)(x − αg+1) · · · (x − α2g)(x − α2g+1)(x − α2g+2) (3.1)

where λ̄2g+2 ≡ 1 and the λ̄j and αj are complex values.

Remark 9 ([B1, p 195], [B3, pp 144–5]).

(1) The transformation between y2 = f (x) and ζ 2 = f (ξ) is as follows:

x = a

ξ − α2g+2
ci = a

αi − α2g+2
ζ = (ξ − α2g+2)

g+1

−4
∏2g−1
i cj

y. (3.2)
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(2) The unnormalized differentials of the first kind are defined by

ω1 = dx

2y
ω2 = x dx

2y
. . . ωg = xg−1 dx

2y
. (3.3)

(3) The unnormalized differentials of the second kind are defined by [B2, p 195]

ηj = 1

2y

2g+1−j∑
k=j

(k + 1 − j)λ̄k+1+j x
k dx (j = 1, . . . , g). (3.4)

(4) The definition of σ - and ℘-functions are the same as those in definitions 2 and 3, where
we regard that y obeys the equation y2 = f (x) instead of y2 = f (x).

Proposition 10 ([B3, pp 155–6]). The hyperelliptic℘-functions of a curve y2 = f (x) (g = 3)
obey the following relations:

(X-1) ℘3333 − 6℘2
33 = 2λ5λ7 + 4λ6℘33 + 4λ7℘32 − 8λ4λ8 + 4λ8(4℘31 − 3℘22)

(X-2) ℘3332 − 6℘33℘32 = 4λ6℘32 + 2λ7(3℘31 − ℘22)− 4λ3λ8 + 8λ8℘21

(X-3) ℘3331 − 6℘31℘33 = 4λ6℘31 − 2λ7℘21 + 4λ8℘11

(X-4) ℘3322 − 4℘2
32 − 2℘33℘22 = 2λ5℘32 + 4λ6℘31 − 2λ7℘21 − 8λ2λ8 − 8λ8℘11

(X-5) ℘3321 − 2℘33℘21 − 4℘32℘31 = 2λ5℘31 − 4λ1λ8

(X-6) ℘3311 − 4℘2
31 − 2℘33℘11 = 2+

(X-7) ℘3222 − 6℘32℘22 = −4λ2λ7 − 2λ3℘33 + 4λ4℘32 + 4λ5℘31 − 6λ7℘11 − 8λ1λ8

(X-8) ℘3221 − 4℘32℘21 − 2℘31℘22 = −2λ1λ7 + 4λ4℘31 − 2+− 8λ0λ8

(3.5)

together with relations (X-9)–(X-15) and+which have the same form as those in proposition 4
by replacing the λ with the λ.

Theorem 11. For v = −2(℘33 +λ6/3) and u(t1, t2, t3) = v(u3,
u2

2
√−3

,− u1
24 − 3

22λ7
u2) both the

v obey the KP equation

∂t1(∂t3v + 6v∂t1v + ∂3
t1
v) = ∂2

t2
v. (3.6)

Proof. Noting that λ8 = 1, direct substitution of the v into (3.6) gives the differential of (X-1)
in u3. �

Remark 12.

(1) Theorem 11 means that we obtain an explicit function form of the hyperelliptic function
solution of the KP equation.

(2) We note the dispersion relation. Since the curve y2 = f (x) is not ramified at the infinity
point, uj behaves like (1/x)(g−j) up to a constant factor. By comparing the order of x,
denoted by ordx , we have the relations

ordx(u2) = 2ordx(u3) ordx(u1) = 3ordx(u3). (3.7)

These are the dispersion relations of the KP equation.
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4. Discussion

Since the derivation of proposition 10 is essentially the same as that of proposition 4, we will
only give a sketch of the derivation of the differential equations in proposition 4 and comment
upon its relation to the soliton theory.

Definition 13 ([B1, p 195], [B2, p 314, pp 335-06], [O2]). For points of P(x, y), Q(z, w),
A(a, b), B(c, d) over Xg , we introduce the following quantities:

(1)

RP,A
Q,B :=

∫ P

A

∫ Q

B

f (x, z) + 2yw

(x − z)2
dx

2y

dz

2w
(4.1)

where

f (x, z) :=
g∑
j=0

xjzj (λ2j+1(x + z) + 2λ2j ). (4.2)

(2)

P P,A
Q,B :=

∫ P

A

(
y + w

x − z − y + d

x − c
)

dx

2y
. (4.3)

Proposition 14 ([B1, pp 194–5], [B2, p 318, p 336], [O2]).

(1) RP,A
Q,B and P P,A

Q,B as functions of P have singularity around P = Q, B of first order with the
residues 1, −1 and are holomorphic otherwise. In other words, they are unnormalized
third differentials.

(2)

RP,A
Q,B =

∫ P

A
ω1

∫ Q

B
η1 + · · · +

∫ P

A
ωg

∫ Q

B
ηg + P P,A

Q,B . (4.4)

(3) For Pj , Qj ∈ X, (j = 1, . . . , g), and

u =
g∑
j=1

∫ Pj

∞
ω u′ =

g∑
j=1

∫ Qj

∞
ω (4.5)

the following relation holds:

exp

(
g∑
j=1

R
P,Q
Pj ,Qj

)
=
σ
(∫ P

∞ ω + u
)
σ
(∫ Q

∞ ω + u′
)

σ
(∫ P

∞ ω + u′
)
σ
(∫ Q

∞ ω + u
) (4.6)

where Pj (Qj ) is the conjugate of Pj (Qj )with respect to the symmetry of the hyperelliptic
curve (x, y)→ (x,−y).

Remark 15. The relation (4.6) is very important. It holds for appropriate σ -functions and
third differentials in a general compact Riemannian surface [B1, p 290], even though their
form cannot be globally written like definition 13. As we will show below, the relation plays
important roles in both Baker’s theory and DKJM-theory [DKJM].
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Here we will sketch the derivation of the equations in proposition 4 following [B1]
and [B3]. First we introduce the variables for the divisors Pj = (xj , yj ) and P = (x, y) ≡
(x0, y0) in the notation of proposition 14 (3),

t :=
(∫ P

∞
ω + u

)
(4.7)

R(z) := (z− x0)F (z) := (z− x0)(z− x1)(z− x2) · · · (z− xg) (4.8)
R(z)

(z− xr)(z− xs) =: zg−1 + cr,s1 z
g−2 + cr,s2 z

g−3 + · · · + cr,sg (4.9)

and for the generic parameter e,

δe :=
g∑
µ=1

eµ−1 ∂

∂tµ
. (4.10)

We operate δe1δe2 on both sides of relation (4.6) in proposition 14. We should note the relation

g∑
r=0,r �=s

xr − xs
R′(xr)

c
r,s
l−1x

g−k
r = δkl (4.11)

where cr,s0 = 1 and R′(xr) = dR(z)/dz|z=xr . By taking the limit x0 → ∞, we obtain [B1,
p 328, p 376]

g∑
λ=1

g∑
µ=1

℘λµ(u)e
λ−1
1 e

µ−1
2 =

(
g∑

r=1,s=1

F(e1)F (e2)(2yrys − f (xr , xs))
(e1 − xr)(e2 − xr)(e1 − xs)(e2 − xs)F ′(xr)F ′(xs)

)
.

(4.12)

We deform it to obtain [B1, p 328], [B3, p 138],

g∑
λ=1

g∑
µ=1

℘λµ(u)e
λ−1
1 e

µ−1
2 = F(e1)F (e2)

(
g∑
r=1

yr

(e1 − xr)(e2 − xr)F ′(xr)

)2

− f (e1)F (e2)

(e1 − e2)2F(e1)
− f (e2)F (e1)

(e1 − e2)2F(e2)
+
f (e1, e2)

(e1 − e2)2
. (4.13)

Even though in [B3] Baker adopted this formula (4.13) as a definition of ℘-functions,
his arguments on this formula were derived from a number of studies on the hyperelliptic
function [B1, B2]. Thus we should regard (4.13) as a theorem which was proved in [B1].

Introducing another operator,

δe = 1

F(e)

g∑
j=1

ej−1 ∂

∂uj
(4.14)

we operate δe3δe4 on the above relation (4.13) and then we have the ‘fundamental formula’ [B3,
p 144]. Section I in [B3] is devoted to the derivation of his fundamental formula, which is very
tedious and complex but somewhat attractive. In fact, tracing his derivations makes me feel
that there might be deep symmetry behind his theory. In section II in [B3], Baker concentrated
on the genus three case. By comparing the coefficients of each ea1e

b
2e
c
3e
d
4 , he discovered the

differential equations in propositions 4 and 10. In the comparison, Baker used the symmetric
functions, Pfaffian and bilinear operators. The symmetric functions naturally appear because
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the differential of the first kind in the hyperelliptic curve is expressed by [B3]


du1

du2

du3

·
·

dug


 = 1

2




1/y1 1/y2 · · · 1/yg
x1/y1 x2/y2 · · · xg/yg
x2

1/y1 x2
2/y2 · · · x2

g/yg
· · · · · ·
· · · · · ·

x
g−1
1 /y1 x

g−1
2 /y2 · · · x

g−1
g /yg







dx1

dx2

dx3

·
·

dxg


 . (4.15)

This matrix resembles the Vandermonde matrix. In fact (4.11) is an identity used in the
construction of the inverse matrix of the Vandermonde matrix.

Corresponding to the above matrix (4.15), the behaviour of differentials of the second
kind in the theory of KP hierarchy [K1, K2, SS, DKJM, KNTY] is sometimes determined by
the Vandermonde matrix


1 1 · · · 1
x1 x2 · · · xp
x2

1 x2
2 · · · x2

p

· · · · · ·
x
p−1
1 x

p−1
2 · · · xp−1

p


 . (4.16)

The difference between Baker’s theory of hyperelliptic function and modern soliton theory
could be regarded as the difference between (4.15) and (4.16).

In modern soliton theory [SS,DKJM,KNTY], we deal with a formal graded ringGC[[x]]
:= ∪nGnC[[x]] related to the degrees of the x as a localized ring at the infinity point of an
algebraic curve. Then we consider maps among quotient modules GnC[[x]]/Gn−1

C[[x]],
which consist of ∂x and x. The differential ring generated by ∂x and x becomes Sato’s
theory [SS] and conformal field theory [KNTY] after appropriately modifying it. There
naturally appear the Vandermonde matrix (4.16) of the x, symmetric functions, Pfaffian related
to the behaviour of the differential of the second kind around the infinity point; the Vandermonde
determinate is related to fermion amplitude [DKJM, KNTY].

In the theory of differentials of the second kind, when one determines the global behaviour
of an algebraic function on a curve by its local data around the infinity point, Baker uses the
properties of holomorphic functions over the curves, such as existence theorem, flabby of
related sheaves and so on. On the other hand, Baker’s theory is of differentials of the first
kind and it is a global theory because differentials of the first kind are holomorphic all over
the curve and are given explicitly. Accordingly, we can deal with the hyperelliptic functions
in the framework of Baker’s theory as we do with elliptic functions.

We will comment on proposition 4 in the framework of DKJM-theory [DKJM].

Remark 16. For points P = (x, y), Q = (
√−1x, y) and P = (x,−y) around the infinity

points x = x2, we obtain the following relations:

(1) R
P,Q
A,B

= RA,B
P,Q . (4.17)

(2)
∫ (x,y)

∞
ωµ = −

∫ (
√−1x,y)

∞
ωµ =

∫ (x,y)

(
√−1x,y)

xµ−1 dx

y

= − 1

2g − 2µ + 1

1

x2g−2µ+1 + lower order terms. (4.18)

(3)
∫ (x,y)

(
√−1x,y)

ηj = 2[x2g−2j+1] + lower order terms. (4.19)
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(4)
g∑
j=1

R
P,Q
Pj ,Qj

= −2[(u1 − u′
1)x

2g−1 + (u2 − u′
2)x

2g−3 + · · · + (ug − u′
g)x] +

g∑
j=1

P
P,Q
Pj ,Qj

+ lower order terms. (4.20)

Using remark 16, setting g = ∞ and neglecting the lower-order terms, relation (3) in
proposition 14 is reduced to the generating relation of the KdV hierarchy in the DKJM method:∮

∞

dx

x
exp

( g∑
j=1

(uj − u′
j )x

2g−2i+1

)

×σ
(
u1 − 1

2g − 1

1

x2g−1 , u2 − 1

2g − 3

1

x2g−3 , . . . , ug − 1

x

)

×σ
(
u′

1 +
1

2g − 1

1

x2g−1 , u
′
2 +

1

2g − 3

1

x2g−3 , . . . , u
′
g +

1

x

)
= 0. (4.21)

In terms of differential operators, we can rewrite this relation and then we obtain the KdV
hierarchy [DKJM]. Thus the origins of the KdV hierarchy in Baker’s method and the DKJM
method are the same.

Remark 17. We will now summarize the differences between soliton theory and Baker’s
theory.

(1) As in soliton theory of the KdV hierarchy [DKJM,K1,K2,SS], we investigate the behaviour
of meromorophic functions around the infinity point of a hyperelliptic curve: (i) it can be
regarded as a theory of differentials of the second kind; (ii) it can be extended to the theory
of meromorophic functions of a general compact Riemannian surface as the theory of the
KP hierarchy [DKJM,K1,K2,KNTY,SS]; and (iii) we cannot determine fine structure of
meromorophic functions of non-degenerate curves.

(2) As in the Baker’s theory of hyperelliptic ℘-functions, we consider the behaviour of ℘-
functions around generic points (x1, y1), . . . , (xg, yg) of a hyperelliptic curve: (i) we
directly deal with differentials of the first kind which are holomorphic all over the curve; (ii)
we can determine all parameters in ℘-functions of the curve; (iii) we can give explicit
function forms of ℘-functions and coefficients of Laurent expansions around any points
in the curve; and (iv) we cannot extend it to a general compact Riemannian surface with
this concreteness.

(3) The differentials of the first and second kinds are complementarily connected as the term
in (4.4) of the most important identity (4.6). Thus in (4.6), they behave like two sides of
the same coin.

Finally we comment upon this study. In Baker’s theory, we have no ambiguous and
dependent parameters while in ordinary soliton theory of periodic solutions there appear
undetermined parameters which must satisfy several relations. Hirota and Ito gave explicit
function forms of hyperelliptic functions of genera two and three as periodic solutions of
the KdV equation (2.21) [HI]; they determined several parameters by means of numerical
computations. However functions should be expressed only by independent variables and thus
Baker’s theory has the advantage and is appropriate even from the viewpoint of numerical
study. I hope that in the near future, anyone would be able to plot graphs of any hyperelliptic
functions or any periodic multi-soliton solutions like the graphs in [HI], using a personal
computer and a laser printer, as we can do for elliptic functions or elliptic soliton solutions.
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